Extremal Almost-kähler Metrics

نویسنده

  • MEHDI LEJMI
چکیده

We generalize the notions of the Futaki invariant and extremal vector field of a compact Kähler manifold to the general almost-Kähler case and show the periodicity of the extremal vector field when the symplectic form represents an integral cohomology class modulo torsion. We also give an explicit formula of the hermitian scalar curvature in Darboux coordinates which allows us to obtain examples of non-integrable extremal almost-Kähler metrics saturating LeBrun’s estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Kähler Classes of Extremal Metrics

Let (M,J) be a compact complex manifold, and let E ⊂ H1,1(M,R) be the set of all cohomology classes which can be represented by Kähler forms of extremal Kähler metrics, in the sense of Calabi [3]. Then E is an open subset. ∗Supported in part by NSF grant DMS 92-04093. †Supported in part by NSF grant DMS 90-22140.

متن کامل

On Modified Mabuchi Functional and Mabuchi Moduli Space of Kähler Metrics on Toric Bundles

Mabuchi introduced the Mabuchi functional in [Mb1], and it turns out that it is very useful for dealing with Kähler metrics with constant scalar curvatures on compact manifolds (see [BM], etc.). One can also expect that the existence of Kähler metric with constant scalar curvature is almost equivalent to the existence of a lower bound of the Mabuchi functional (see, e.g., [Ti]). But for the cas...

متن کامل

Polarized 4-Manifolds, Extremal Kähler Metrics, and Seiberg-Witten Theory

Using Seiberg-Witten theory, it is shown that any Kähler metric of constant negative scalar curvature on a compact 4-manifold M minimizes the L-norm of scalar curvature among Riemannian metrics compatible with a fixed decomposition H(M) = H ⊕ H−. This implies, for example, that any such metric on a minimal ruled surface must be locally symmetric.

متن کامل

Asymptotic Properties of Extremal Kähler Metrics of Poincaré Type

Consider a compact Kähler manifold X with a simple normal crossing divisor D, and define Poincaré type metrics on X\D as Kähler metrics on X\D with cusp singularities along D. We prove that the existence of a constant scalar curvature (resp. an extremal) Poincaré type Kähler metric on X\D implies the existence of a constant scalar curvature (resp. an extremal) Kähler metric, possibly of Poincar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009